Spectral mixture analyses of hyperspectral data acquired using a tethered balloon
نویسندگان
چکیده
Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view (GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region. The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution. Including the short wave infrared (SWIR) region in the hyperspectral and multispectral endmember data significantly reduced the Pearson correlation coefficient values among endmember spectra. Therefore, combination of visible, NIR, and SWIR information is likely to further improve the utility of SMA in understanding ecosystem structure and function and may help narrow uncertainties when utilizing remotely sensed data to extrapolate trace glas flux measurements from the canopy scale to the landscape scale. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کامل